Ensuring Accurate Color Measurement of Hydrochromic Textiles with Spectrophotometers

hydrochromic
Moisture can change the color of fabrics in deliberate, overt ways or create subtle color shifts nearly imperceptible to the human eye.
Image Source: Pexels user snapwiresnaps.tumblr.com

The Unseen Emporium in London, England is more of a laboratory than a design house. Through a daring and innovative combination of fashion, chemistry, and digital technologies, the three masterminds behind the label work to produce dynamic clothing, accessories, and lifestyle goods that respond to their environments based on specific stimulants.1 Among their most eye-catching creations are extravagantly tailored leather jackets that change color as the humidity in the room fluctuates, the moisture level creating vivid chromatic shifts. The phenomenon of hydrochromism—color change in response to water—has heretofore primarily been intentionally implemented in the textile industry as a novelty in the form of color-changing umbrellas and swimwear. The Unseen Emporium, however, is bringing it to a new level of artistry.

But hydrochromic textiles are not a recent invention. Although deliberately moisture-sensitive dyes with dramatic color changes may be in their infancy, some level of hydrochromism is inherent to most textiles already in use today, often to the consternation of textile manufacturers.

hydrochromic
Dark cotton fabrics will display a greater degree of color change in the presence of moisture.
Image Source: Pexels user snapwiresnaps.tumblr.com

The Impact of Moisture on Textile Color

While some are seeking to exploit the potential of hydrochromism to develop innovative new products, for others in the textile industry, hydrochromism is one of a variety of ordinary variables that must be accounted for when taking color measurements. Even fabrics that do not contain dyes specifically formulated for hydrochromism are susceptible to moisture-induced color changes both great and small depending on the qualities of the fabric, dye, and environment. Michael Thornton, product manager at Datacolor, says, “It has been technically proven that the physical color of a sample can alter substantially if the ambient temperature and relative humidity are not stable.”2

The reason for these changes has to do with how water affects the way light acts on fabrics to create chromatic variation. As relative humidity increases, the fabric absorbs moisture, strengthening the color of textiles and producing deeper shades. This is the result of decreased light scattering, which “provide[s] more opportunity for absorption of light in the sample and thus contribute[s] to an increase in its color strength.”3 Different fabric and dye combinations will produce different levels of color change; fabrics that naturally absorb moisture are more susceptible to hydrochromic variation. The effect is particularly pronounced in dark fabrics.

hydrochromic
Conditioning cabinets allow you to prepare textile samples for accurate color measurement by controlling for moisture.
Image Source: Flickr user jenny downing

Controlling for Hydrochromism

To account for hydrochromism, the ASTM developed the D1776 ‘Standard Practice for Conditioning and Testing Textile’ method, which offers specific temperature and humidity ranges for testing fabric color.4 Preparing samples using a conditioning cabinet that allows you to control heat and humidity enables you to adhere to standard practices as well as monitor color shifts in a full range of conditions appropriate for your product. Once the sample has been acclimatized to your chosen environment, spectrophotometric instrumentation is used to produce precise quantification of chromatic information. The data provided by your spectrophotometer can allow you to tailor dye formulations and other processing variables to produce exactly the color you desire as well as maintain ongoing color monitoring within your production line to produce consistency both within and between products. The marriage between a conditioning cabinet and spectrophotometer is paramount to ensuring hydrochromic color changes, whether integral or incidental to your product, fall within your expectations and can be reproduced across a product line.

The Highest Standard in Color Measurement

HunterLab spectrophotometric instruments are lauded across the textile industry for their technological excellence, reliability, and ease of use. Combined with conditioning cabinets, our spectral analysis tools give you the ability to monitor hydrochomic textiles with the highest level of accuracy, whether you are developing new products that highlight the possibilities of color change, or need precise measurements of traditional fabrics. Contact us for more information about how our range of spectrophotometers and world-class customer service can serve you.

  1. “When Chemistry Meets Couture: Clothes That Change Color With the Climate,” June 29, 2015, http://www.cnn.com/2015/02/10/world/when-chemistry-meets-couture/
  2. “Datacolor Cabinet Aids Color Sample Measurement,” September 2005, http://www.textileworld.com/Issues/2005/September/New_Products/Datacolor_Cabinet_Aids_Color_Sample_Measurement
  3. “The Effect of Humidity, Fabric Surface Geometry and Dye Type on the Colour of Cotton Fabrics Dyed With a Select Range of Anionic Dyes,” September 2011, http://www.researchgate.net/publication/251509988_The_effect_of_humidity_fabric_surface_geometry_and_dye_type_on_the_colour_of_cotton_fabrics_dyed_with_a_select_range_of_anionic_dyes
  4. “ASTM D1776/D1776M-15: Standard Practice for Conditioning and Testing Textiles”, http://www.astm.org/Standards/D1776.htm

Leave a Reply

Your email address will not be published.

Time limit is exhausted. Please reload CAPTCHA.